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The reactant concentration spectrum in turbulent 
mixing with a first-order reaction 
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(Received 14 January 1961) 

The power spectrum of a passive scalar contaminant undergoing a first-order 
chemical reaction and isotropic turbulent mixing is deduced for three different 
spectral ranges: (i) the inertial-convective range; (ii) the viscous-convective 
and viscous-diffusive ranges for very large Schmidt number; (iii) the inertial- 
diffusive range for very small Schmidt number. The analysis is restricted to 
stationary, locally isotropic fields, and to systems so dilute that the heat of 
reaction has no effect on the reaction rate. 

Introduction 
A clarification and extension of the stationary, locally isotropic, turbulent 

mixing problem has recently been given by Batchelor (1959), and Batchelor, 
Howells & Townsend (1959). After preserving the Obukhov (1949)-Corrsin (1951) 
spectral result, 

with proportionality constant of order one, for the inertial-convective wave- 
number range, Batchelor focused attention on fluid + contaminant fields with 
very large ‘Schmidt number’ or ‘Prandtl number’, v/r  9 1. v is the kinematic 
viscosity, 7 is the diffusivity, k is the wave-number, E is the turbulent energy- 
dissipation rate, e0 is the corresponding scalar contaminant field property, the 
rate of destruction of @ by diffusion. 

He pointed out that for v/r 9 1 and large Reynolds number, there will be a 
viscous-convective wave-number range, 

G ( k )  N E S E - 3 k - 9 ,  (1) 

in which the velocity spectrum is strongly affected by viscous forces, while the 
scalar field spectral transfer is predominantly convective. His analysis for 
k > (e/v3)f yielded 

(3) 

where k,  E (e/vr2)*. This applies from the viscous-convective range (where the 
exponential is of order unity) all the way to k -+ co. 

Then Batchelor, Howells & Townsend considered the opposite extreme of il 
fluid-contaminant combination for which v / r  < 1, in which there can exist an 
inertial-diffusive spectra range (+)’< k 4 (;)‘. (4) 
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Here the turbulence spectrum is of Kolmogorov type 

P(k)  N &-+, 
with proportionality constant of order one, while the contaminant spectrum is 
strongly diffusive. For this range they deduced essentially that 

The present study is aimed at  generalizing equations (l), (3) and (6) to include 
the effect of a first-order chemical reaction, assuming a system sa,dilute that 
associated temperature changes have negligible effects on the reaction rate and 
flow. Some preliminary results on decaying, reacting fields have been discussed 
(Corrsin 1958), and the formal consequences of the quasi-Gaussian hypothesis 
have been analysed (O'Brien 1960). 

The differential equation for concentration of a dilute contaminant under- 
going a first-order chemical reaction along with the convection and molecular 
diffusion is ao ae 

- + ui - = p e  - ce, 
at axi (7)  

where C is a constant. With less dilute reactant, it will be necessary to include 
the heat of reaction and the temperature dependence of C .  u is the turbulent 
velocity field, 7 is the (constant) diffusivity, t is time, x is the co-ordinate vector. 
As pointed out earlier (Corrsin 1958; O'Brien 1960), this particular reaction-rate 
term is not spectrally selective, so in a freely decaying field it merely multiplies 
the mixing wave-number spectrum by an additional (exponential) decay in time. 

For stationary states, however, such simple arguments cannot be applied; 
we must pursue spectral elements in time as they migrate to ever larger wave 
numbers in the stationary spectrum. For the inertial range analysis of the 
turbulence itself this is essentially the approach used rather informally by 
Onsager (1949), arriving independently at  Kolmogorov's result P N k-9. For 
the viscous-convective spectral range in scalar mixing, this method of reasoning 
was introduced more rigorously by Batchelor ( 1959). Direct dimensional 
reasoning will not yield the explicit result of equation (23) because the reaction 
introduces an additional dimensional constant without increasing the number 
of dimensions. 

This paper is restricted to local isotropy for both velocity and reactant fields. 

Pure mixing in the inertial-convective range 
As a prelude to the following section, it is instructive to re-derive the k-beha- 

viour of (1) by a method like Onsager's. We restrict our consideration to a k-range 
in which the transfer of e"i spectral elements is purely convective. This means that 

if v/?;r 9 1, and that 

if v / q  < 1. 
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Employing the crude concept of a spectral ‘energy’ cascade in which the @ 
spectral elements ‘jump ’ to successively larger k, we introduce the following 
assumptions. 
(a) The cascade wave-number sequence is a geometrical progression, so that 

Ak FS k. (10) 

For turbulence dynamics this is suggested by the non-linearity of the Navier- 
Stokes equations; here we appeal to the quasi-non-linear traits of ( 7 ) ,  due to the 
convective ‘forcing function ’ coefficient u. 

(b)  The part of @ transferred in a jump at  wave-number k is C ( k )  Ak. We take 
it to be FS G ( k ) k .  

( c )  The characteristic time for each jump depends, of course, on the velocity 
spectrum F(k) ,  and the simplest dimensional possibility is 

T(k) = k - 0 - 4  (11) 

The use of this form for the spectrally local convection time restricts us to the 
inertial part of the turbulence spectrum. 

In the inertial-convective range, the rate of flux of 82 spectral content through 
any k must be independent of k, i.e. 

Using ( l l ) ,  G F ~ ~ B  = const. (13) 

G = Dk-4, (14) 

Using F N k-8 as appropriate here, we find from (13) that 

with D a constant, consistent with (1). This approach does not immediately give 
the dimensional coefficients as in (1) and (5). They can be estimated by other 
means. For example, we may use the expression for diffusive destruction of @ 
spectral content, 

€0 = 271; k2Gdk. (15) 

€0 M 2 7 ~ 1 ~ ~ ~  k+dk. (16) 

Assume that the order of the integral is given by the part between a wave- 
number &, characterizing the large structure and the wave-number ( ~ / 7 3 ) 4  
(for the cases v/q 5 1). Then 

(ElV)f 

Integrating and neglecting @kt relative to ( ~ / 7 ~ ) * ,  w0 get 

D x Z& E-. 
3 6  3 

consistent with (1). 

Reactive mixing in the inertial-convective range 
In the non-diffusive spectral range, (7) can be approximated by 
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0, represents any 'narrow-band ' 0-field in the convective spectral range. Multi- 
plying by 0, and averaging, we lose the convective term b$ homogeneity and 
are left with the simple decay equation 

Integrating, we obtain the result 

= ( E ) , e - 2 ~ t .  

The time rate of increase of wave-number for this reactively decaying spectral 
packet is still given by (10) and (1  l),  since the first-order reaction has no effect 
on the geometry of the isoplethic surfaces, so 

or 

dk, Ak, k, 
dt r(kn)  r 

- z - z kiFJ(kn).  

With ( Z O ) ,  we see that (12) generalizes to 

Using (21) for dkldt, and ( 5 )  for F(k) ,  this integrates to 

which is shown qualitatively in figure 1. Evidently, for wave-numbers well 
above kc = C k - 4 ,  the effect of reaction on spectral shape is negligible. kc locates 
the spectral region in which the rate of reactive loss is of the same order as the 
rate of convective spectral transfer. 

The dimensional coefficient B in this generalization of (1) or (14) cannot be 

estimated by a condition as simple as (15) because 27 k2Gdk no longer repre- 

sents the total rate of destruction of @. Of far narrower applicability than (15) 
would be estimation of D in (14) or B in (23) by 

1: 
- ok' or m 

82 = 1; G d k  E G d k .  

Here ,kL is the 'energy-bearing' wave-number; ,k* is the end of the inertial- 
convective range. The limitation is, of course, that the main contribution to this 
integral comes from the neighbourhood of ,kL, where G is unlikely to be well 
approximated by (14) or (23). The same limitation arises if we replace (15) by 
an expression for the total rate of destruction of a'i: 

ok' or m 

N N 2.21 [ '"' k2Gdk -I- 2C [ Gdk.  
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Having recorded these extreme doubts, but having no clearly better choice, 
we use (24) to estimate B. (26) is more tedious and not necessarily more reliable. 
Thus we write - 

O2 w B/::: k-8 exp {3Ce-)k-f) dk. (27) 

By integration, we get the final result 

- 
(28) 02 ___ Beg [exp {3Ce-+ek*-f} - exp {~C&-~JQ}I. 

2c 

A 

log G 

Since @k* 9 &L, we neglect the tirst exponential, getting the estj,mate 

B NN 2C@e-)exp { - 3C~-),kZf}. (29) 

A 
FIGURE 1. Qualitative sketch of reactant spectrum in inertial-convective range. 

To gain some appreciation of (28) or (29), consider its limiting form for C --f 0. 
This is obtained most easily by putting (14) into (24), or by expanding (28) as 
a series, to give B -+ D M $Pgk%. 
Equating this estimate to the better one [equation (17)], we find that 

(30) 

- 
€0 w O ~ J & , E ~ .  (31) 

A similar approach to the inertial turbulent-energy spectrum gives the well- 
known estimate for dissipation rate in terms of large-scale parameters, 

- 
E M ( U 2 ) 4 k L ,  (32) 

€8 W e 2 ( U 2 ) + 8 k j J i .  (33) 

omitting a factor of order unity. Putting (32) into (31), we get a form looking 
like (32), - _  
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If the large structures of velocity and contaminant fields are about equal, 
- _  

€* z 02(U2)+kL. (34) 

In  any case, we see that (29) represents the same kind of approximation as one 
used in obtaining (32). 

Reactive mixing in the viscous-convective range and beyond 
In  the limiting case of mixing at very large Schmidt number, v/r, Batohelor 

(1959) pointed out the possibility of a locally isotropic viscous-convective range 
as outlined in the Introduction. His initial arguments are unaffebted by the 
addition of our first-order, passive chemical reaction. 

This spectral range is characterized by the property that the ‘smallest eddies’ 
of the turbulent motion are much larger than the characteristic lengths of the 
scalar field, (e/v3)4 < k. Therefore, if we follow a small region of fluid, the turbulent 
straining action can be visualized as locally uniform for a limited time. This 
permits analysis of the history of a Fourier element of concentration field under 
the joint action of turbulent straining and molecular diffusion. Inference of 
general spectral behaviour from a single spectral point is permissible here 
(unlike analysis of the turbulence field) because the diffusion equation is linear. 

Batchelor chooses Cartesian axes which translate with a fluid element and 
are always alined with the local principal strain-rate axes. Calling these local 
principal strain-rates a, p, y,  equation (7) can be written as 

Presumably a, /? and y can be taken constant over distances comparable with 
the Kolmogorov microscale (v3/e)i, and over times comparable with the Kolmo- 
gorov time (v/e)a. The subscript on 8, reminds us that we shall analyse the history 
of a single Fourier element of the full 0-field. 

Following Batchelor’s procedure, we get instead of his equation (4.6), the 
equation 

0,(x, t )  = A ,  exp (:y - - Ct 1 sin (kz), (36) 

where k = k 2 = k 02 e-71 (37) 

and A ,  is initial amplitude (see equation (4.4) in Batchelor’s paper). If we call 
8,(x, t )  the field with C = 0, and compare with Batchelor’s form for O,,, then 

0,(x, t )  = 0,,(x, t )  ecct. (38) 

To use such determinate results to infer the behaviour of a random 8-field 
randomly strained by isotropic turbulence, we argue that (36) applies to any 
Fourier element whose k 9 (€/v3)f. The magnitude of the maximum negative 
strain-rate is taken to be the root-mean-square value of strain-rate for the 
turbulence, i.e. we set 

Supposing that the 0-field is maintained statistically steady by continuous 
feeding into the large structure, we use (37) to estimate the kinematic history of 

(39) y M - & ( € / Y ) 6  



Turbulent mixing with a Jirst-order reaction 413 

any narrow slab of the broadband &spectrum as it migrates to larger and 
larger k under the convective straining of the turbulence. Then (36) tells us how 
fast this slab loses F-content during any time interval of speEtral travel. 

The time required for a narrow slab to travel from k‘ to k follows from (37). 
It is 

T = -!log(;), Y 

given by Batchelor. The change in slab width as it goes from k‘ to k is found to 

(41) 
be 

During this time interval, the contribution to @ carried by this slab decreases 
in the ratio given by the square of (36), with (40) for the travel time, or 

Sk/k = Sk’lk’. 

(42) 

To compare the actual spectral levels at  k’ and k, we start with 

G ( k )  Sk = G(k‘) Sk’vBk. (43) 

By use of (41) and (42), this leads to 

, IC(~-~CIY)G(~)  e-?k21y = k’(l-?CIy)G(k’) e-@21Y. (44) 

By inspection [or by using (44) we set up a difference equation, thence a differ- 
ential equation which can be solved], we arrive at the spectral form 

G ( k )  = N k @ c / ~ ) - ~  exp {7k2/y),  (45) 

which reduces to Batchelor’s mixing form for C = 0. N = const. Introducing 
(39) for y, we derive the final result 

where k, 5 (e/vy2)*. The wave-number k, = C4e-t does not play a direct role in 
the shupe of this part of the spectrum. It does, however, affect the entire local 
level through N .  

In  the viscous-convective range, k* < k 4 k,, (46) simplifies to a power law, 

G(k) M j3Tk-(1+4Cu9a-*). (47) 

We note parenthetically that (47) (and Batchelor’s limiting form for C = 0) 
can also be obtained by application of (22) with the spectral transfer time taken 
as 7 = const. = (u/e)h. 

Qualitatively, the combination of (23) and (45) gives a @-spectrum like 
figure 2. 

To evaluate N ,  werequire that (46) [hence (47)] match the lower wave-number 
form, equation (23), at k = k* = ( € 1 ~ ~ ) ”  This gives 

or 
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If we take (29) as a rough approximation for B, and neglect &! relative to k*% 
in the exponent, (48) becomes 

N % 28ic(v/€)Bk*-Cv*,-* (49) 

It should be noted that the argument of the (constant) exponential can be 
written as { - 3(kJ0kL)?) [see remarks after equation (23)]. The ubiquity of the 
dimensionless reaction rate C ( V / E ) ~  is notable here, as in earlier results. 

log G 

log F 

I 
I 
I 
I 
I I \  

I ! log k 

log (€ lU3>” log (€ luq”+ 

FIGURE 2. Qualitative sketch of reactant spectrum for v/q + 1. 

The relation (46) reduces immediately to Batchelor’s mixing case when we put 
C = 0. The corresponding simplification of the constant coefficient N follows 
by noting that (48) then reduces to 

N --f Bk*-f, (50)  

while B --f D z eee-f, (51) 

N -+ &+P> (52) 

in accordance with (1). From (50) and (51)) 

in essential agreement with the C = 0 theory. 

Reactive mixing in the inertial-diffusive range 
For v / ~  @ 1, there exists an inertial-diffusive range in the 0-spectrum, its wave- 

number characterized by (4). For this case we can simply follow the procedure 
of Batchelor et al. (1959)) with the addition of the reactive term as in equation (7) .  
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The Fourier transform of (7) can be written as 

at k;Qj(k-k',t)P(k',t)dk = - rk2P(k , t ) -CP(k , t ) .  (53) 

The simplifying theoretical arguments presented by Batchelor et al. (1959) 
can be summarized and adapted as follows. 

(a )  Since the 8-spectrum doubtless falls off much more rapidly than the 
u-spectrum in this range, the principal contribution to the integral must come 
at  values of k' of the order of and less than (e/q3)$. It follows that over most of 

k' < k (54) 
the spectral range of this analysis 

in the important part of the integral. 
( b )  The diffusion and reaction time for a Fourier component of 8 around wave- 

number k is of order (qk2 + C)-l, but the convective (quasi-source) effect has the 
inertial range characteristic time (ek2)-* [which is the same as equation (ll)]. 
With k 9 (e/r3)&, the latter time is much the larger. Therefore the time-derivative 
term can be neglected in equation (53) when it is applied to the wave-number 
range of interest here. 

Neglect aPpt in (53) ,  then multiplying the remainder by its complex conjugate, 
and continuing to follow the Batchelor, Howells & Townsend arguments by 
using (54) to justify neglecting the statistical connexion between the (spectrally) 
widely separated factors in this integrand (Ik-k'l S k'), we finally get the 
following extension of their equation (8) : 

( rk2  + C)2 G ( k )  z $sgF(k)/q,  (55 )  

where €8 is the rate of destruction of @ by diffusion. Introducing ( 5 )  for F ,  
we arrive at  

which reduces properly for C = 0. With C += 0, it approximates the pure-mixing 
form in the wave-number range k (C/q)%, which is a measure of the spectral 
location where reactive loss rate and diffusive loss rate are comparable. 

Since (56) has no arbitrary constant coefficient (except of order unity as a 
consequence of the various approximations en  route), the matching of (56) with 
(23) at the wave-number ,k* = (./?73)9 just gives a relation among a number of 
characteristic constants in the problem. The matching leads directly to 

With (29) as an estimate for B, this can be written as 

E Z M ~ C O ~  -[ l + C  J2]2exp [ - r [ (&) ok" - 11). 

This approximation is not correct for C + 0. The non-reacting limit requires 
that the entire expression (28) be used for B. 
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The qualitative characteristics of reacting spectra for v/y < 1 are sketched in 
figure 3. w e  notice in (58) that for this case the appropriate diqensiodess reac- 
tion rate is C(r,~/s)& instead of C(v/e)&. 

1% (€h3)+ log (e /u ’ ) i  

FIGURE 3. Qualitative sketch of reactant spectrum for v/q < 1. 

Since (58) gives an estimate for the rate of diffusive destruction of @, the total 
rate at  which &is fed into the spectrum is just 

€8 = -5; + 2CP. (59) 

This work was supported by Fluid Dynamics Branch, U.S. Office of Naval 
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